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Solutions and critical times for the monodisperse 
coagulation equation when uii = A + B  ( i  + j )  + Cij 

John L Spouge 
Trinity College, Oxford OX1 3BH, England 

Received 13 September 1982 

Abstract. This paper shows that if a,, = A  + B( i  + j ) +  Cij, the solutions of Smoluchowski’s 
coagulation equation (monodisperse case) 

X1(O) = 1, X z ( O l =  X 3 ( O )  = . . . = 0, (1) 

can be expressed as equilibrium distributions conditioned on a deterministically changing 
(and known) parameter. A partial converse is also given. Because the equilibrium 
distributions are already known, this effectively solves (1) for the given a,,. If C # 0, then 
there is a finite critical time t = t ,  when the moments of the right of (1) cease to converge. 
We find t ,  for all the given a,i. 

1. Introduction 

In 1916, Smoluchowski modelled colloidal coagulation with an infinite set of differen- 
tial equations. Those equations generalise to the so-called coagulation equation: 

Xl(0) = 1, XZ(0) =x3(0) = . . . = 0. (1) 
Equation (1) has this interpretation: consider a suspension of randomly diffusing 
identical particles (called units). At time t = 0, the units start to clump irreversibly 
(coagulate) when they meet. Call the clusters so formed polymers. (Polymer 
chemistry is the best-developed paradigm for the process. We adopt its terminology 
for convenience, but do not imply that applications of (1) are restricted to polymer 
chemistry.) Call a polymer of k units a k -mer. Then 

xk = xt(f) = the  concentration of k-mers at time t (normalised so that the initial 
concentration of units, x1(0), is 1). 

The boundary conditions in (1) state that initially all particles are units. This is 
the so-called monodisperse case. We do not consider the polydisperse case (initial 
particles of varying size) in this paper. 

This is the coagulation kernel. The coagulation equation (1) gives the rate of change 
of the k-mer concentration with respect to time as the sum of two terms: the first is 
the rate of k-mer coagulation with other particles, causing k-mer disappearance; the 

a,, = ai, = the rate constant for aggregation of i-mers and j-mers. 
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768 J L Spouge 

second is the rate at which k -men form from the coagulation of smaller particles (the 
factor of 4 ensures that each such coagulation is counted once). 

Smoluchowski (1916) solved the system (1) for equal aij’s (i.e. when all polymer 
pairs clump at the same rate, regardless of size). 

Drake’s (1972a) thorough review of coagulation gave explicit solutions of the 
coagulation equation (polydisperse case) for the kernels 

aii = A  + B(i + j )  + Cij, C = O  or B ~ = A C .  (2) 

These solutions contained the monodisperse cases as specialisations. Drake also stated 
that he ‘was able to write down a ‘formal series’ for the solution.. . for arbitrary A ,  
B and C’. He goes on to say: ‘the formal series appears to have no practical value’. 
Note, however, that Drake was seeking solutions for the polydisperse case of coagu- 
lation. 

In fact, we shall show that the solutions for the coagulation equation (monodisperse 
case) when the kernel is bilinear (without restriction) 

~ i j  = A  + B(i +j)+Cij (3) 

are known. We shall also give critical times for the bilinear kernels. To explain this 
term, note that (1) implies conservation of units: 

m m 

k = l  k = l  
1 k x k ( t )  = k x k ( 0 ) =  1. (4) 

(Multiply (1) by k ,  then sum over all k .  For the bilinear kernels, the series obtained 
on the right are absolutely convergent when Z k 2 x k ( r )  is, and have algebraic sum zero. 
The expression obtained on the left is the derivative of (4), hence (4) must be constant.) 

This constancy is preserved up to the critical time t,, when an infinite aggregate 
(called a gel in polymer chemistry) forms. After t,, the left side of (4) diminishes to 
zero, because the gel traps more and more units. (For bilinear kernels, gel formation 
corresponds to divergence of the second moment of x k ( t ) ,  i.e. Z k 2 x k ( t ) .  See Drake 
1972b, Ziff 1980.) 

We obtain our results by relating the solutions of the monodisperse coagulation 
equation to equilibrium distributions. As in Stockmayer (1943) and Spouge (1982, 
1983) we condition the equilibrium distributions on the separation of the system, 
which is 

the total polymer concentration at time t. (Stockmayer (1943) used a different, but 
equivalent parameter.) Summing (1) over k yields 

For the bilinear kernels (3), equations (4), (5) and (6) give 

dpld t  = - i (Ap  * + 2Bk + C ) .  (7) 

Hence, for the bilinear kernels (3), this equation parametrises time by total polymer 
concentration p.  
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2. Equilibrium models 

This section generalises some combinatoric results in Spouge (1982, 1983) which 
applied only to chemical polymers. The results here apply to more general aggregation 
processes. Consider a reversible aggregation process 

where R k  represents a k-mer. In this section, x k  is the k-mer Concentration at 
equilibrium. 

When applied to the system of reactions (8), the principle of detailed balance 
(Whittle 1965) states: if the system (8) is in equilibrium, then each reaction is also in 
equilibrium. Let the forward rate of reaction (8) be aij, and let the rate of k-mer 
break-up be b k .  By considering reactions (8) for fixed k and summing over i = 
1,2 ,  . , . , (k - l ) ,  the principle of detailed balance gives 

For many models of aggregation, the reactions (8) represent creation/destruction 
of a bond. For such models, k-mers have (k - 1) bonds, and if the rate of k-mer 
break-up is proportional to the number of bonds, (9) becomes 

where K is a constant, as yet undetermined. 
In order to solve (10). we introduce the generating function 

m 

z =  1 (Wk/k!)e-Ok 
k = l  

where w1 = 1 and the constants {wk/k!} (k = 1,2,  3 , .  . .) satisfy (10) with K = 1 when 
they replace {xk}. (The factorial appears in order to agree with previous notation.) 

The solution of (10) is 

X k  = K (Wk/k !) e-pk (12) 

where p is an arbitrary constant. If we condition the {xk} on the total polymer 
concentration p (see equation ( 5 ) ) ,  then 

x k  = ( p / z ) ( w k / k ! )  e-pk. (13) 

If, in addition, the x k  are normalised so that the total concentration of units is 1 (see 
equation (4)), then 

2 = - p Z f  (14) 

where Z ' ,  2" etc denote successive derivatives of 2 with respect to p. 
The moments of xk are 
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We now restrict the discussion to the bilinear kernels (3). For these kernels, 
recursion (10) for w k / k !  becomes 

wk w w .  
2(k - 1) - = 1 [A + B (i + j )  + Cij]’ --!. k !  z + j = k  i! j !  

Multiplying (16) by e-pk and summing over k gives 

2(-2’ -2) =AZ’ - 2BZZ’+ C(Z’)’. 

Equations (17) and (14) imply 

2 = 2p (1 - p ) / (Ap ’ + 2Bp + C), 

Z’= -2(1-p) / (Ap2+2Bp +C). 

Differentiating (17) and substituting (18) and (19) gives 

2 ( 1 - ~ )  - A p 2 + 2 A p + 2 B + C  
A p 2 + 2 B p  + C  (A+2B)p2+2Cp  -C‘  

2” = 

Having summarised the equilibrium models, we now relate them to the solutions 
of the coagulation equation (monodisperse case). 

3. Solution of the coagulation equation 

This section gives a tedious algebraic verification of: 

Theorem 1 .  For the bilinear kernels (3), and for those kernels only, the monodisperse 
coagulation equation (1) has the solution {xk} of equations (10)-(14), where equation 
(7) gives the total polymer concentration p as a function of time for t < t,. 

This theorem states: only for the bilinear kernels are distributions (1) equal to 
equilibrium distributions conditioned on total polymer concentration p. 

Proof. Consider first the bilinear kernels (3). Divide equation (1) by xk and consider 
the first term of the right side: 

m m 

- 1 ai& = - 1 [A +B( i  +k)+Cik]xi = k(-Bp -C)+(-Ap -B) 
i = l  i = l  

(see equations (4) and ( 5 ) ) .  
The second term of the right side becomes 

CL A p 2 + 2 B p  + C  1 aijxixj = ( k  - 1)- = ( k  - 1) 
xk 2 i + j = k  Z 2(1-p) 
1 1  _ _  

(see equations ( lo) ,  (12), (13) and (18)). 
To get the left side of (l), we differentiate (14) with respect to p to obtain 

d p  -Z’ (A + 2B)p’ + 2Cp - C 
d p  Z’+pZ” (Ap2+2Bp  +C)( l -p)  

- -= - 

(see equations (19) and (20)). 
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Differentiate (13) with respect to p to get 

1 dXk 1 2‘ dp  dp  
- k-. 

X k  d p  p z d p  dP 
Therefore 

(see equations (24), (14), (23) and (7)). 
The sum of (21) and (22) equals (25), which demonstrates satisfaction of (1) for 

the bilinear kernels (3). 
To demonstrate that satisfaction occurs only when the kernel is bilinear, note that 

(22) and (24) (hence (25)) are linear functions of k ,  no matter what the kernel is. 
Satisfaction of (1) implies that (21) (the difference of (25) and (22)) must also be a 
linear function of k.  For t < t,, equation (21) converges absolutely, so we may take 
second differences with respect to k inside the summation on the left side: 

QD 

1 ( h 2 U i k ) X i  = 0 for all p 
i = l  

(second differences of linear functions are 0). Because this is a power series in e-’ 

b 2 U i k  = 0 for all i .  (27) 
Hence aik is a linear function of k. Since aij  = aji, aij must have the symmetric bilinear 
form (3). 

Since Spouge (1982) summarises the equilibrium solutions for bilinear kernels (2), 
C = 0 or B 2  = AC, and Spouge (1983) gives the solutions for the remaining bilinear 
kernels, this theorem is tantamount to solving the monodisperse coagulation equation 
for all bilinear kernels. 

(see (13)) 

The next section gives the critical times t ,  for all bilinear kernels. 

4. Critical times for bilinear kernels 

As noted after equation (4), the second moment of x k  diverges at the critical time f,. 
Because of equation (15), this implies that Z ”  diverges. This occurs when equals 
the critical separation 

-C+[C(A+2B+C)]”’ 
9 A + 2 B  f O ,  A +2B CLC = 

A + 2 B  =0, (28) 

To obtain the critical times, we solve (7) by separating the variables and substitute 

The results are summarised in table 1 (‘ln’ denotes a natural logarithm). To my 
knowledge, the critical time for C # 0, B2 = AC is the only one previously published 
(Leyvraz and Tschudi 1981). After conversion of notation, that result agrees with 
table 1. 

1 - -  - 2, 

since this is the only positive root of the denominator of (20). 

CL, for P. 
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Column 1 of table 1 gives the cases for the integration of (7). Column 2 gives the 
solution of (7) in each case ( t  as a function of g). In the cases C # 0, A # 0, B 2  Z AC, 
the intermediate values F+, p- ,  a and y simplify the form of the solution. t ,  is the 
value of t when pc (equation (28)) replaces F.. Simplification of the resulting 
expression, where applicable, appears in column 3 (under ‘ tc ’ ) .  Column 4 gives g as 
a function of t. 
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